Different relationship of N- and P/Q-type Ca2+ channels to channel-interacting slots in controlling neurotransmission at cultured hippocampal synapses.

نویسندگان

  • Yu-Qing Cao
  • Richard W Tsien
چکیده

Synaptic transmission at CNS synapses is often mediated by joint actions of multiple Ca(2+) channel subtypes, most prominently, P/Q- and N-type. We have proposed that P/Q-type Ca(2+) channels saturate type-preferring slots at presynaptic terminals, which impose a ceiling on the synaptic efficacy of the channels. To test for analogous interactions for presynaptic N-type Ca(2+) channels, we overexpressed their pore-forming Ca(V)2.2 subunit in cultured mouse hippocampal neurons, recorded excitatory synaptic transmission from transfected cells, and dissected the contributions of N-, P/Q-, and R-type channels with subtype-specific blockers. Overexpression of Ca(V)2.2 did not increase the absolute size of the EPSC even though somatic N-type current was augmented by severalfold. Thus, the strength of neurotransmission is saturated with regard to levels of Ca(2+) channel expression for both N-type and P/Q-type channels. Overexpression of Ca(2+)-impermeable Ca(V)2.2 subunits decreased EPSC size, corroborating competition for channel slots. Striking asymmetries between N- and P/Q-type channels emerged when their relative contributions were compared with channel overexpression. Overexpressed N-type channels could competitively displace P/Q-type channels from P/Q-preferring slots and take over the role of supporting transmission. The converse was not found with overexpression of P/Q-type channels, regardless of their C-terminal domain. We interpret these findings in terms of two different kinds of presynaptic slots at excitatory synapses, one accepting N-type channels but rejecting P/Q-type (N(specific)) and the other preferring P/Q-type but also accepting N-type (PQ(preferring)). The interaction between channels and slots governs the respective contributions of multiple channel types to neurotransmission and, in turn, the ability of transmission to respond to various stimulus patterns and neuromodulators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic Ca2+ Channels Compete for Channel Type-Preferring Slots in Altered Neurotransmission Arising from Ca2+ Channelopathy

Several human channelopathies result from mutations in alpha1A, the pore-forming subunit of P/Q-type Ca2+ channels, conduits of presynaptic Ca2+ entry for evoked neurotransmission. We found that wild-type human alpha1A subunits supported transmission between cultured mouse hippocampal neurons equally well as endogenous mouse alpha1A, whereas introduction of impermeant human alpha1A hampered the...

متن کامل

N- and P/Q-type Ca2+ channels mediate transmitter release with a similar cooperativity at rat hippocampal autapses.

The relationship between extracellular Ca2+ concentration and EPSC amplitude was investigated at excitatory autapses on cultured hippocampal neurons. This relationship was steeply nonlinear, implicating the cooperative involvement of several Ca2+ ions in the release of each vesicle of transmitter. The cooperativity was estimated to be 3.1 using a power function fit and 3.3 using a Hill equation...

متن کامل

Developmental changes in presynaptic calcium channels coupled to glutamate release in cultured rat hippocampal neurons.

Excitatory synaptic transmission in the hippocampus involves the participation of at least two types of presynaptic Ca2+ channels, N-type channels sensitive to omega-conotoxin GVIA (omega-CTx GVIA) and Q-type channels sensitive to omega-agatoxin IVA (omega-Aga IVA). Hippocampal pyramidal neurons in cell culture were used to examine the participation of these two classes of channels at different...

متن کامل

Differential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in hippocampal mossy fiber boutons.

Voltage-gated Ca2+ channels in presynaptic terminals initiate the Ca2+ inflow necessary for transmitter release. At a variety of synapses, multiple Ca2+ channel subtypes are involved in synaptic transmission and plasticity. However, it is unknown whether presynaptic Ca2+ channels differ in gating properties and whether they are differentially activated by action potentials or subthreshold volta...

متن کامل

Homeostatic Presynaptic Plasticity Is Specifically Regulated by P/Q-type Ca2+ Channels at Mammalian Hippocampal Synapses

Voltage-dependent Ca2+ channels (VGCC) represent the principal source of Ca2+ ions driving evoked neurotransmitter release at presynaptic boutons. In mammals, presynaptic Ca2+ influx is mediated mainly via P/Q-type and N-type VGCC, which differ in their properties. Changes in their relative contributions tune neurotransmission both during development and in Hebbian plasticity. However, whether ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 13  شماره 

صفحات  -

تاریخ انتشار 2010